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1. Introduction

The present work is concerned with the same mechanical system investigated in Ref. [1]. It is
made up of two clamped-free Bernoulli-Euler beams carrying tip masses to which several spring—
mass systems are attached across the span. The special case of a symmetric system can be viewed
as a model of a suspension bridge tower for studying its bending vibrations, among other
applications. In Ref. [1], the Green function method is employed to derive the frequency equation
of the system described. The eigenfrequencies are obtained one by one through the numerical
solution of a determinantal equation. As also reported in Ref. [2], one encounters sometimes with
numerical difficulties in finding the roots of a determinantal transcendent equation which can be
very time consuming. On the other hand, it is not obvious which combinations of the physical
parameter values would cause such a situation is not known a priori. Motivated by this
experience, here an alternative method is given for obtaining the eigenfrequencies of the system
above. Although it is acknowledged that the method used follows the classical line, it is the belief
of the authors that it enables a design engineer who deals with similar systems, to obtain very
accurate approximate values of the eigenfrequencies simultaneously and quickly.

After application of the assumed modes method to the continuous parts of the system, the
system 1is discretized. Then the Lagrange equations formulation is applied, where the
displacements of the attachment points of the springs of the double spring—mass systems to
the beams are expressed in terms of the generalized co-ordinates. Finally, a generalized eigenvalue
problem is formulated through the solution of which the eigenfrequencies of the system can be
obtained approximately. In comparison to the Green function method where the eigenfrequencies
are obtained one by one through the numerical solution of a determinantal transcendent equation,
in the present method, eigenfrequencies can be determined simultaneously without being faced
with any numerical problems.
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2. Theory

The problem to be dealt with in the present study is the natural vibration problem of the system
shown in Fig. 1, i.e., a laterally vibrating system consisting of two clamped-free Bernoulli-Euler
beams carrying tip mass to which 7 double spring—mass systems (secondary systems) are attached
across the span.

The main subject of this study is the derivation of the frequency equation of the system described
above. The frequency equation follows directly from the formulation of the Lagrange’s equations
where the displacements of the attachment points of the secondary systems and those of the tip
masses to both beams are expressed in terms of the generalized co-ordinates [2]. The formulation
leads to a generalized eigenvalue problem, the solutions of which gives the eigenvalues and hence
the eigenfrequencies of the system.The kinetic and potential energies of the system are
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Fig. 1. Two clamped-free laterally vibrating beams carrying tip masses to which 7# double spring—mass systems are
attached across the span.
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lateral rigidity of the ith beam, respectively (i = 1,2). Further, the bending displacements of the
beams are denoted as w;(x,?). The jth secondary system attached consists of two springs of
stiffness’s ky,;, k»,; and the secondary mass Mg, The attachment points of this system to the
beams are denoted by m;L and Lo, respectively, as shown in Fig. 1. Here, zo;,; and z(», ; denote
the lateral displacements of the attachment points of the jth spring—mass to the first and second
beams, respectively, while z; represents the displacement of the secondary mass Ms,. The lateral
displacements of the beams at point x are assumed to be expressible in the form of finite series
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are the mass orthonormalized eigenfunctions of both clamped-free Bernoulli-Euler beams and

ny (1) and n,(1) (i =1, ..., n) are generalized co-ordinates to be determined.

If the assumed series solutions Eq. (3) are substituted into the energy Eqgs. (1) and (2), they can
be expressed as
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where the orthonormalization properties of the eigenfunctions in Eq. (4) are taken into account.
Here, w;1 and w;, denote the ith eigenfrequencies of the bare cantilevered beams in Fig. 1. Using
matrix notations the energy expressions in Egs. (5) and (6) can further be expressed as
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where

an([) = [nll(t)a XX nnl([)]’ ﬂg(l) = [7’12(07 ceo an(l)],
n'() =Ml Qf=diago]), @ =diagw}),
Q) = diag(Q}, Q%) (i=1,...,n), 9)

and I, denotes the (2n x 2n) identity matrix.

The idea behind this approach is to express the displacements of the spring attachment points
and point masses on to the beams, i.e., zo1, ;(?), zo2, j(¢), za, (?) and zp,(7) G =1, ..., 7) in terms of
the vectors m;(¢), n,(¢) and hence of n(7)
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The vectors Ij; and I»; are 2n x 1 vectors.
Starting with the energy expressions Eqgs. (7) and (8), along with Egs. (9)—(11) the following
matrix differential equation is obtained, by using the Lagrange’s formulation:
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It is worth noting that in obtaining the above form of equation of motion, extensive use is made of
the formulas regarding the partial derivatives of bilinear forms, quadratic forms and vectors with
respect to algebraic vectors [3].

Introducing harmonic solutions of the form

-t
z z

o being the eigenfrequency of the system, leads to the following generalized eigenvalue problem
M —am H , (15)
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The solution of the eigenvalue problem Eg. (15) yields the non-dimensional eigenfrequency
parameters f§ of the mechanical system in Fig. 1 via f = X'/,

3. Numerical results

This section is devoted to the numerical evaluations of the formulae established in the preceding
sections. As the first numerical application, a system with only one secondary system, i.e., 77 = 1, is
taken. The following values are chosen for the physical data of the mechanical system in Fig. 1.
M1 = 0.50, ny; = 0.50, oy, , = o,, = 1000, ops, = otpr, = 2, 04 = 1, U, = Lap=1,x=1 1Itis
seen clearly that the system under consideration is a symmetrical one. These numerical values are
the values, used also in Ref. [1]. The number of the modes » in Eq. (3) is chosen as 15. The first 10
dimensionless eigenfrequency parameters f3 of the system above are collected in Table 1.

The first column contains those 3 values taken from Ref. [1] which were obtained on the basis of
the Green function method. The figures in the second column represent the fourth roots of the
eigenvalues A of the solution of the generalized eigenvalue problem formulated in Eq. (15) of the
present study. The solution of the eigenvalue problem is performed with MATLAB.

The comparison of the numbers in both columns indicates clearly that the present approach
yields very good approximations to the “‘exact” eigenfrequency parameters in the first column
obtained via the Green function method.

As a second example, a sample system with 7 = 2, i.e., with two secondary systems is taken. The
chosen physical data are as follows: 1y, = 1y = 0.50, 15 =1y = 0.75, o, = o, =4, o, =
Oy, = 6, g, = 0pg, =7, 0y = 1, UM, = O, = S,00. =1, y=1.

The number #n in Eq. (3) is taken again as 15. The first 12 dimensionless eigenfrequency
parameters f§ of the system above are given in Table 2. The first column contains those f values
which are determined by the Green function method given in Ref. [1]. The numbers in the second
column represent the fourth roots of the eigenvalues 1 of the solution of the generalized
eigenvalue problem in Eq. (15). The comparison of the numbers in both columns reveals a good
agreement indicating that the present approach yields very good approximations to the “exact”

Table 1

Dimensionless eigenfrequency parameters f§ of the system in Fig. 1 with only one secondary system, i.e., 7 = 1

From Ref. [1] From Eq. (15)
1.070263 1.070263
1.558790 1.558790
3.309592 3.309592
6.334255 6.334282
6.819830 6.819830
7.469383 7.469383
7.925956 7.925956

10.666736 10.666736

10.746971 10.746971

13.402318 13.404682




M. Giirgoze, H. Erol | Journal of Sound and Vibration 269 (2004) 431-438 437

Table 2
Dimensionless eigenfrequency parameters f§ of the system in Fig. 1 with two secondary systems, i.e., /i = 2
Via the method in Ref. [1] From Eq. (15)
0.764696 0.764693
0.922096 0.922087
1.183296 1.183294
1.231295 1.231287
4.000036 3.999825
4.027484 4.027278
7.084902 7.084860
7.083080 7.087985
10.219316 10.219295
10.220430 10.220384
13.357241 13.357239
13.357319 13.357315

eigenfrequency parameters, in this example too. One could expect that the dimensionless
eigenfrequencies /5 obtained from Eq. (15) converge to those from the Green function approach as
n gets larger, but there is not enough evidence in order to make this statement.

The great advantage of the approach used in the present study is that all eigenfrequency
parameters of the system are obtained simultaneously and without any difficulties. On the
contrary, by using the Green function method, these parameters have to be found via one by one
numerical search of the roots of a determinantal equation which is of transcendental nature. It is a
well-known fact that finding the roots of transcendental equations is associated often with
numerical difficulties.

4. Conclusions

This paper deals with the eigencharacteristics of a laterally vibrating system made up of two
clamped-free Bernoulli-Euler beams carrying tip masses to which several double spring—mass
systems are attached across the span. After discretizing via the assumed modes method, the
Lagrange’s equations formulation is applied, where the displacements of the spring attachment
points and those of the tip masses to both beams are expressed in terms of the generalized
co-ordinates. This procedure leads to a generalized eigenvalue problem. The eigenvalues of it yield
the eigenfrequencies of the system simultaneously. The numerical results obtained reveal that the
eigenfrequencies calculated by this method are in good agreement with those obtained by the
Green function method.
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